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Sampling outperforms GaussianUnconstrained Receptive Fields
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Our primary goal is to estimate 
spatial tuning, without making 
assumptions about the pRF 
geometry. Instead of estimating pRFs 
in the parameter-space of e.g., a 2-D 
Gaussian, we estimate pRFs in 
pixel-space, by quantifying how 
much each pixel contributes to the 
encoding performance per unit.

In each iteration, we select a random 
subset of pixels and evaluate an 
encoding model that only uses visual 
information from the remaining 
pixels. The resulting encoding 
performance (r) is then credited to 
the subset of pixels and averaged per 
pixel across many iterations.

Best encoding performance per model

Best model per site

Dataset
We use the THINGS ventral stream spiking 
dataset (TVSD) 4 containing 
electrophysiology recordings of visual 
regions V1, V4, and IT of two macaque 
monkeys viewing natural object images from 
the THINGS 5 dataset.

CNN Model
We use the three max-pool layers of an  
ImageNet-trained AlexNet for feature-
extraction for all encoding models.

Spatial weighting
We compare encoding models using 
different multiplicative spatial weights of 
feature maps: Default (equal weight at all 
locations), Gaussian (2-D isotropic), and the 
sampled pRFs. After spatial weighting, each 
feature map is averaged across the spatial 
dimensions.

Encoding model
For each layer, we regress the collapsed 
features onto the Ephys data per recording 
site on the train set. Finally, we evaluate 
encoding performance as the Pearson 
correlation between the predictions on the 
test set and the measured neural data per 
recording site.

Using the sampled pRFs 
as spatial weights 
outperforms the best 
Gaussian fit across all 
three ROIs.

Both models consistently 
outperform the Default 
model.

While encoding 
performance for the 
Sampling and Gaussian 
model decreases towards 
higher level visual cortex, 
it increases for the Default 
model.

Sampling needs ~75% less 
computation time than 
Gaussian fitting.

Population Receptive Field mapping
The spatial tuning of populations of neurons, 
as reflected in their population receptive 
field (pRF), is a fundamental property 
determining visual neural responses. 

pRF geometry is typically modeled as a 2D 
isotropic Gaussian 1, assuming the pRF 
samples a circular “aperture” in the visual 
field. This assumption has allowed to 
formalize mathematical models of neural 
spatial tuning.

However, it has been found that using a more 
complex geometry can improve neural 
predictions 2. Thus, it remains unclear what 
assumptions to make about the geometry 
of pRFs.

Advances in using Convolutional Neural 
Network (CNN) features 3 allow for estimating 
pRFs on natural images and to model instead 
of measure the neural spatial tuning.
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• Using random sampling of 
convolutional feature maps, we 
recovered the spatial tuning of 
population of neurons in monkey 
electrophysiology data.

• The resulting sampled pRFs are 
obtained in a fully data-driven, 
assumption-free approach and 
therefore advance our understanding 
of the true nature of pRFs.

• Using the sampled pRFs as spatial 
weights in an encoding model results 
in the overall highest encoding 
performance.

• Obtaining the sampled pRFs is 
computationally much faster than 
Gaussian fitting.

Encoding performance (r) per siteWithout making assumptions 
about the geometry of pRFs, 
we find that:
1. The sampled pRFs 

resemble a wide range of 
tuning profile, in many 
cases outperforming the 
best Gaussian fit

2. Very non-Gaussian looking 
pRFs can also achieve high 
encoding performance 
(even if the Gaussian 
model performs better)

Overall, the spread in 
encoding performance 
differences decreases from 
V1 to V4 and IT, suggesting 
that the Gaussian model is 
generally better for recording 
sites in higher-level visual 
cortex.

Future directions
Using this method we can 
explore how accurately the 
Gaussian (and any other 
geometry) can describe 
pRFs. More specifically, we 
can investigate whether 
more spatially-complex 
tuning profiles exist (e.g., 
bimodal, non-convex, non-
isotropic, etc.).

Future steps would include 
sampling on the CNN input 
image instead of on the 
feature maps, to increase 
spatial specificity and 
spatial resolution. 
However, doing this would 
also interfere with the 
processing within the CNN 
itself.

Both operate in the 
parameter space of a 
pre-defined geometry 
(e.g., a 2-D isotropic 

Gaussian) and are 
therefore restricted by 
the expressiveness of 

that geometry.

What happens if we 
let go of the Gaussian 

assumption and 
estimate pRFs with 

unconstrained 
geometries?
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