Sample, Don’t Assume:
Unconstrained Receptive Field Mapping
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Population Receptive Field mapping

PRF estimation using
forward mqgl_el on stimuli

The spatial tuning of populations of neurons,
as reflected in their population receptive
field (pRF), is a fundamental property
determining visual neural responses.
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PRF geometry is typically modeled as a 2D
isotropic Gaussian ', assuming the pRF
samples a circular “aperture” in the visual
field. This assumption has allowed to
formalize mathematical models of neural
spatial tuning.
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PRF estimation using encoding

However, it has been found that using a more
model on CNN feature maps

complex geometry can improve neural
predictions 2. Thus, it remains unclear what
assumptions to make about the geometry
of pRFs.
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What happens if we
let go of the Gaussian
assumption and
estimate pRFs with
unconstrained
geometries?

Mapping using
CNN features 3
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2D Layer Activations

Advances in using Convolutional Neural
Network (CNN) features 2allow for estimating O
PRFs on natural images and to model instead — ' 2 J
of measure the neural spatial tuning. ~ onn )

Unconstrained Receptive Fields Sampling outperforms Gaussian —

Dataset

Our primary goal is to estimate
spatial tuning, without making
assumptions about the pRF
geometry. Instead of estimating pRFs

In each iteration, we select a random
subset of pixels and evaluate an
encoding model that only uses visual
information from the remaining

We use the THINGS ventral stream spiking
dataset (TVSD) 4 containing
electrophysiology recordings of visual
regions V1, V4, and IT of two macaque
monkeys viewing natural object images from
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Best encoding performance per model

Using the sampled pRFs
as spatial weights
outperforms the best
Gaussian fit across all

the THINGS >dataset.
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In the parameter-space of e.g., a 2-D
Gaussian, we estimate pRFs in
pixel-space, by quantifying how
much each pixel contributes to the
encoding performance per unit.

pixels. The resulting encoding
performance (r) is then credited to
the subset of pixels and averaged per
pixel across many iterations.

three ROls.

CNN Model
We use the three max-pool layers of an
ImageNet-trained AlexNet for feature-
extraction for all encoding models.
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Encoding performance (r)
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Both models consistently
outperform the Default
model.
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Spatial weighting
We compare encoding models using
different multiplicative spatial weights of
feature maps: Default (equal weight at all

Model

N Default B Gaussian B Sampling

Iterative Random Sampling While encoding

Best model per site

2D L (per layer, subject, recording site)
Activa?fr:s > > locations), Gaussian (2-D isotropic), and the 400 - performance for the
/1. Create random 2. Apply mask to 3. Get Encoding Score 5. Average sampled pRFs. After spatial weighting, each Sampllng and Gaussian
D ' spatial mask 2D activations and list per pixel » scores per pixel feature map is averaged across the spatial 2 300 model decreases towards
® 1 D dimensions -
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\ E For each layer, we regress the collapsed = del
< < features onto the Ephys data per recording 100 - modetl.
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)
o xE : : ) Evaluate encodin encoding performance as the Pearson i : <70
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Receptive Field Geometry Conclusions

Future directions
Using this method we can

Without making assumptions
about the geometry of pRFs,

Encoding performance (r) per site , .
* Using random sampling of

- 0.84 0.86 0.72 0.81 )
we find that: 09- o explore how accurately the convolutional featgre ma.ps, we
1. The sampled pRFs 08 o o sampled: b ‘L b Gaussian (and any other recovered the spatial tuning of
resemble a wide range of - 2SS 0.66 0.69 0.79 0.87 geometry) can describe population of neurons in monkey
tuning profile, in many o pRFs. More specifically, we electrophysiology data.
cases outperforming the Gaussian: < can investigate whether
best Gaussian fit s 06 07 08 05 ‘. ‘. ‘. " more spatially-complex * Theresulting sampled pRFs are
2. Very non-Gaussian looking 09l 0.58 0.74 071 0.64 tuning profiles exist (e.g., obtained in a fully data-driven,

assumption-free approach and
therefore advance our understanding
of the true nature of pRFs.

bimodal, non-convex, nhon-
Isotropic, etc.).

PRFs can also achieve high
encoding performance
(even if the Gaussian
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Sampling encoding performance (r)

model performs better) » Future steps would include

#1 T sampling on the CNN input  Using the sampled pRFs as spatial
Overall, the spread in X 06 07 08 0o image instead of on the weights in an encoding model results
encoding performance 094 — 0.78 0.74 07 071 feature maps, to increase in the overall highest encoding
differences decreases from 08 spatial specificity and performance.
V1 to V4 and IT, suggesting 71 ‘b b f” b spatial resolution.
that the Gaussian model is 051 | | 0.77 0.73 However, doing this would * Obtaining the sampled pRFs is
generally better for recording 05 ) also interfere with the computationally much faster than
sites in higher-level visual 0.4 ’ | | | | | rv 4. processing within the CNN Gaussian fitting.
cortex. o ”° e o8 o8 itself.

Gaussian encoding performance (r)
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