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The origins of Texture-Bias High-Resolution Matters
Deep Convolutional Neural QI Intensity Red-Green Blue-Yellow
Networks (DCNNs) trained on Open Amsterdam Data Set 2 _
ImageNet have been shown to (OADS) ?Eo" e
exhibit a texture-bias (Geirhos et al. Ultra-high-resolution, labelled B
2018). The origin of this texture-bias image dataset I
has been debated widely (e.g., 5691 Images <~ 5496x3672 pixels %
Hermann et al. 2020). 98534 Object Label annotations
e
Here, we show that the same : : : =
. . Main Contribution A
models trained on an ultra-high- <

resolution dataset exhibit a more [ |+ 4 tion  of ultra-high-  Color-Opponent-Channel (COC) representation allows for a direct inspection
human-like shape-bias. of available shape information. The top row shows a representative image

resolution labelled IMage from ImageNet. The second row shows a representative image crop from the

H dataset OADS Open Amsterdam Data Set (OADS). The last row shows the JPEG-compressed

Further, when tested on Cue- . (croation of high-resolution cue-  version of the OADS image crop. Original RGB version (first column), Intensity

Conflict images created from conflict dataset channel (second column), Red-Green channel (third column), and Blue-Yellow
ImageNet, the texture-bias = Texture-bias arises as a function channel (last column) of the COC representation. Images in scale.

drastically decreases. : :
of image quality ImageNet images are inherently missing shape information

DCNN Training & Assessment

We train ResNet50 models with controlled image resolution and We created a OADS Cue-Conflict dataset using
quality on a low-quality and a high-quality dataset and assess Neural Style Transfer? offering an alternative, high-
DCNN texture-bias on a low-quality and a high-quality dataset. resolution assessment of texture-bias in DCNNs

Schematic representation of model training, cross-finetuning and texture-bias assessment
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