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Origins of Texture-Bias

Deep Convolutional Neural Networks
(DCNNs) trained on ImageNet have been
shown to exhibit a texture-bias (Geirhos et al.
2018). The origin of this texture-bias has
been debated widely (e.g., Hermann et al. 2020).

Here, we show that DCNNs trained on an
ultra-high-resolution dataset exhibit a more
human-like shape-bias.

Further, when tested on the ImageNet
texture-bias benchmark, the texture-bias
drastically decreases.

We train ResNet50 models with
different image resolutions on a low-
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Dataset Quality Strongly Contributes To
DCNN Texture-Bias
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Open Amsterdam Data Set (OADS)

Ultra-high-resolution, labelled image dataset
5691 Images <~ 5496x3672 pixels
98534 Object Label annotati
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Contributions

Introduction of ultra-high-resolution
labelled image dataset OADS

Creation of high-resolution
cue-conflict dataset

Texture-bias arises as a function of
image quality

Texture-bias is reflected in
representational geometry

Interaction between image resolution
during training and testing and texture-bias
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DCNN Training & Asessment

Schematic representation of model training, cross-finetuning and texture-bias assessment
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assess DCNN texture-bias on both Block 4
low-quality and high-quality cue- ., Fe
conflict benchmarks. EE --
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We created an OADS Cue-Conflict N~ R\
dataset using Neural Style Transfer3 ResNet30 Aok 4
offering an  alternative, high- o
resolution assessment of texture-bias
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in DCNNs to the ImageNet
benchmark in Geirhos et al., 2018.

ImageNet-Features display low shape-bias
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Image Quality vs. Texture-Bias
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